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The dynamic thermal and elastic behavior of a rod due to a moving heat source are
investigated. The hyperbolic heat conduction model is used for the prediction of the
temperature history. Thermally induced displacements and stresses are determined. An
analytical}numerical technique based on the Laplace transformation and the Riemann-sum
approximation is used to calculate the temperature, displacement and stress distributions
within the rod. The e!ects of di!erent parameters such as the moving source speed, the
convection heat transfer coe$cient are studied and presented.
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1. INTRODUCTION

Heat conduction problems involving a moving source have numerous engineering
applications, such as welding, grinding, metal cutting, "ring a bullet in a gun barrel, #ame or
laser hardening of metals, and others. In the literature, many researchers have investigated
the heat transfer in solids with moving heat sources and under the e!ect of the classical
Fourier heat conduction model [1}5].

More recently, lasers, because of their ability to produce high-power beams, have found
applications in welding, drilling, cutting, machining of brittle materials, and surface
hardening of metallic alloys. For example, in surface hardening, a high-power laser beam
scans over the surface and unique metallurgical structures may be produced by rapid
cooling that occurs subsequent to the laser heating.

In applications involving high heating rates induced by a short-pulse laser, the typical
response time is in the order of picoseconds [6}9]. In such applications, the classical
Fourier heat conduction model fails, and the use of the Cattaneo}Vernotte constitution is
essential [10, 11]. In this constitution, it is assumed that there is a phase-lag between the
heat #ux vector (q) and the temperature gradient ($¹). As a result, this constitution is given
as

q#qN Lq/Lt"!k$¹, (1)

where k is the thermal conductivity and qN is the relaxation time (phase lag in heat #ux). As
a result, the energy equation under this constitution is written as

ocqN L2¹/Lt2#oc L¹/Lt"k+ 2¹. (2)
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Figure 1. Schematic diagram of the rod under a moving heat source.
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In the literature, numerous works have investigated the heat transfer in thin metallic
domains under the e!ect of the hyperbolic heat conduction model [12}15].

Thermally induced deformation in structures occurs when a considerable temperature
change takes place. Depending on the way structures are constrained, deformation may
cause di!erent types of distortions, or stress waves might develop. Transient deformation
and stress waves are the major cause of thermal damage in laser processing of materials
[16]. Therefore, this subject has been studied by many researchers. In most cases, however,
the classical parabolic (di!usion) heat conduction model is used [17,18]. Dynamic variation
of de#ections and thermal stresses in a thin plate due to a very fast rate of heating under the
hyperbolic heat conduction model was studied by Al-Huniti and Al-Nimr [19]. Kukla [20]
has presented a solution to the problem of thermally induced vibration of a beam due to
a moving heat source (laser beam), where he uses the parabolic heat conduction model.

To the authors' knowledge, the behavior of metallic domains involving moving
laser-heating sources, under the e!ect of the hyperbolic heat conduction model, has not
been investigated yet. The aim of the present work is to investigate the dynamic behavior of
a metal rod heated by a high-power moving laser beam. The e!ect of the source speed,
intensity, material properties and dimensions, and other parameters on the rod thermal
behavior is investigated.

2. ANALYSIS

Consider the rod shown in Figure 1. The rod is of uniform cross-sectional area A
c
and

constant perimeter p. Initially, the rod is maintained at a uniform ambient temperature ¹
=

and suddenly, a heating source starts to evolve its energy while moving in the axial
direction. The thermal behavior of the rod is assumed to be lumped in the transverse
direction and, as a result, the temperature ¹ is a function of only time and the axial
coordinate. The governing equations of the problem under consideration are

ocL¹/Lt"!Lq/Lx!(hp/A
c
) (¹!¹

=
)#g, (3)

q#qN Lq/Lt"!kL¹/Lx . (4)

Elimination of q between equations (3) and (4) yields

qN oc
L2¹

Lt2
#oc

L¹
Lt

#

qN hp

A
c

L
Lt

(¹!¹
=

)#
hp

A
c

(¹!¹
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)"g#qN
Lg
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#k

L2¹

Lx2
. (5)

In the above equations, o is the mass density, c is the speci"c heat, h is the convection
coe$cient, (hp/A

c
) (¹!¹

=
) represents the convection losses from the circumferential

surface area of the rod and g (t,x) represents a moving plane heat source of constant
strength releasing its energy continuously while moving along the positive direction of the
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x-axis with a constant velocity (l). This moving heat source is given as [3]

g (t, x)"g
0
d (x!vt), (6)

where g is the heat source in W/m3 and d is the delta function. (A list of nomenclature is
given in the Appendix.)

Equation (5) has the following initial and boundary conditions:

¹ (0,x)"¹
0
,

L¹
Lt

(0,x)"0,
L¹
Lx

(t, 0)"
L¹
Lx

(t,x
0
)"0. (7)

Here x
0

represents the length of the rod. The following dimensionless parameters are used
in equation (5):

h"
¹!¹

=
¹

=

, g"
t

t
0

, q"
qN
t
0

, f"
x

Jit
0

, <"
v

Ji/t
0

. (8)

Here h is the dimensionless temperature,¹
=

is the rod initial temperature (which is the same
as the ambient temperature), g is the dimensionless time, t

0
is a reference time given by

t
0
"(D/2)2/i , D is the diameter of the rod, i is the thermal di!usivity, and q is the

dimensionless phase lag. In terms of the de"ned dimensionless parameters, equations (5)
and (7) are rewritten as

L2h
Lf2

!q
L2h
Lg2

!(1#bq)
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f
<B!qc
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Lh
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0
)"0. (10)

In equation (9), b"(hpt
0
)/A

c
oc and c"(g

0
Jt

0
)/<¹

=
ocJi .

Now, with the notation that Laplace transformation of h(g, f) is given by
lMh (g, f )N"hM (s, f), equations (9, 10) are transformed to

d2hM (s, f )

df2
![qs2#(1#bq)s#b] hM (s, f)"!c (1#qs ) e!(s/<)f, (11)

dhM (s, 0)/df"dhM (s, f
0
)/df"0. (12)

Equations (11, 12) have the solution

hM (s, f)"C
1
e!JA f

#C
2
eJA f

#C
3
e!(s/<)f, (13)

where
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The rod used in the analysis is very thin. This implies that there is no neighboring
medium in the lateral directions (y and z) and hence, the Poisson e!ect is negligible. This
reduces the problem to the one-dimensional case of stress and strain. Based on this, the
stress}strain relation for the rod under consideration (including the e!ect of a temperature
gradient) becomes

p
x
"Ee

x
!Ea(¹!¹

=
), (18)

where E is the modulus of elasticity and a is the coe$cient of thermal expansion. The
one-dimensional strain}displacement relation is

e
x
"Lu/Lx, (19)

where u is the rod elastic displacement in the longitudinal (x) direction. The
one-dimensional equation of motion for an elastic solid is given by

Lp
x
/Lx"oL2u/Lt2 . (20)

Substituting equations (18, 19) into equation (20) results in the governing equation (wave
equation):

L2u(t,x)

Lx2
!

o
E

L2u(t,x)

Lt2
"a

L¹ (t,x)

Lx
. (21)

A dimensionless displacement of the rod is de"ned as

;"

JE/o
ai¹

=

u. (22)

Upon using this and the parameters de"ned in equations (8), the dimensionless form of
equation (21) becomes

L2;(g, f)

Lf2
!j

1

L2;(g, f)
Lg2

"j
2

Lh(g, f)
Lf

, (23)

where j
1
"oi/Et

0
and j

2
"1/Jj

1
.

Upon assuming that the rod was initially at rest in the undeformed position, equation (23)
is subject to the initial conditions

; (0, f)"0,
L;
Lg

(0, f)"0. (24)

With the rod assumed to be supported at both ends, the boundary conditions are given by

; (g, 0)"0, ; (g, f
0
)"0. (25)

With use of equations (24), the Laplace transform of equation (23) yields

d2;M (f, s)
df2

!j
1
s2;M (f, s)"j

2

dhM (f, s)
df

, (26)
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where ;M (s, f) is the Laplace transform of ;(g, f). Di!erentiating equation (13) and
substituting the reset into equation (26) results in

d2;M (f, s)
df2

!j
1
s2;M (f, s)"j

2
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1
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2
eJA f
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Also, the Laplace transform of equations (25) yields

;M (s, 0)"0, ;M (s, f
0
)"0. (28)

Equations (27, 28) have the solution
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Now, the dimensionless stress}displacement relation is rewritten in terms of equations
(18) and (19) as

S
x
(g, f)"j

3
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where j
3
"Jj

1
and S

x
is the dimensionless stress de"ned as
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x
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=
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The Laplace transform of equation (35) yields
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3
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Substituting equations (13) and (29) into equation (37) yields the dimensionless stress as
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3. SOLUTION

In order to determine the temperature, displacement and stress histories of the rod
equations (13), (29) and (38) must be inverted back into the time domain. However, these



TABLE 1

Properties of copper

qN 4)348 (10~13) s
i 1)1283 (10~4) m2/s
c 385 J/(Kkg)
a 1)76 (10~5) 1/K
E 1)19 (1011) N/m2
o 8960 kg/m3
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equations are too complicated to be inverted directly and hence, no closed-form solutions
are possible. Therefore, the Riemann-sum approximation method is used. In this method,
any function hM (s, f) is inverted to the time domain as [16]

h (g, f)"
eeg
g A

1

2
hM (e, f)#Re

N
+
n/1

hM Ae#
inn
g

, fB (!1)nB, (39)

where Re is the real part and i is the complex number J!1. For faster convergence,
numerous numerical experiments have shown that the value of e satisfying the relation
(eg+4)7) gives the most satisfactory results [16].

4. RESULTS AND DISCUSSION

Numerical calculations are performed on a copper rod for which the properties are given
in Table 1. The temperature variations in both time and space are "rst determined, then the
displacement, and "nally the stress variations.

Figure 2 shows the transient thermal behavior of the mid-point of the rod (f"25) at
di!erent moving heat source speeds. For the same time duration, the source evolves the
same amount of energy. However, the intensity of this released energy per unit rod length
decreases as the source speed increases. As a result, each speci"ed location receives less
amount of energy as the source speed increases. This in turn leads to a reduction in the local
temperature distribution within the rod. From the qualitative behavior of the source
cd(g!f/<), the source releases its energy at time g"f/<. This time varies as f varies, but
as < increases, the source releases its energy during the early stages of time. This shifts the
peak in the rod temperature toward small values of g as < increases. Also, the rod thermal
behavior is insensitive to the variation of heating source speed at large speeds and times. At
very large moving source speeds, the source traces the whole length of the rod within almost
the same time, which is a very small one. Also, at very large speeds, the rod thermal behavior
attains an asymptotic behavior as clear from the same "gure.

Figure 3 shows the spatial variation in rod temperature at di!erent moving source speeds.
This "gure is another point of view for the results of Figure 2. It is worth mentioning here
that the temperature peaks for large speed are shifted toward the very near end of the rod (at
fP0) and this is the reason why these peaks do not appear clearly. For large speeds of the
moving heat source, the source evolves its energy almost instantaneously within all
locations of the rod. As a result, the spatial variations in the rod temperature disappear and
the rod may be treated as a lumped system from a thermal point of view. Mathematically,
for large speed, <, the source term, d (g!f/<), becomes d(g). This implies that the source
term becomes independent of space.



Figure 2. Transient variations of dimensionless temperature with time at di!erent source speeds for f"25 and
b"5)1385*10~5. -----, <"0)8863; *** , <"8)863; ***, <"88)63.

Figure 3. Transient variations of dimensionless temperature along the rod length at di!erent source speeds for
g"100 and b"5)1385*10~5. -----, <"0)8863; *** , <"8)863; ***, <"88)63.
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Figure 4 shows the e!ect of the dimensionless heat convective losses on the rod thermal
behavior. As b increases, the thermal losses from the rod increase and the rod temperature
decreases. This reduction enhances as time proceeds due to the accumulation in the e!ect of
b. Also, it is clear that the convective losses have insigni"cant e!ect on the rod thermal
behavior during very early stages of time.



Figure 4. Transient variations of dimensionless temperature with time at di!erent values of convective heat
transfer coe$cient for f"25 and <"0)8863. **, b"5)1385*10~5; -----, b"2)5693*10~5.

Figure 5. Transient variations of dimensionless displacement with time at di!erent source speeds for f"25 and
b"5)1385*10~5. -----, <"0)8863; *** , <"8)863; **, <"88)63.
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Figure 5 shows the time history of the thermally induced displacement of the midpoint of
the rod at di!erent moving heat source speeds. It can be seen from this "gure that the
amount of the displacement increases as the source speed decreases. This is mainly due to
higher temperature at lower speeds (see Figure 2). Also, it can be noticed that at very large



Figure 6. Transient variations of dimensionless displacement along the rod length at di!erent source speeds for
g"100 and b"5)1385*10~5. -----, <"0)8863; *** , <"8)863; ***, <"88)63.

Figure 7. Transient variations of dimensionless stress with time at di!erent source speeds for f"25 and
b"5)1385*10~5. -----, <"0)8863; *** , <"8)863; ***, <"88)63.
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speeds, there is almost no induced displacement in the rod. Figure 6 shows the spatial
variation of the displacement. Again, this "gure is another point of view of Figure 5.

Figures 7 and 8 show the stress variation with time and space, respectively. Since this rod
is restrained against motion from both ends, the thermally induced stresses develop and



Figure 8. Transient variations of dimensionless stress along the rod length at di!erent source speeds for g"100
and b"5)1385*10~5. -----, <"0)8863; *** , <"8)863; ***, <"88)63.
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their magnitudes depend on the temperature di!erence. This is clear from these two "gures
as the stress behavior follows that of the temperature. It is worth mentioning that because of
the end restraints, the developed thermal stresses are compressive since these restraints
oppose the rod elongation. It can be seen here that, as was concluded in the thermal
behavior, for large values of speed, the variations in the rod stress disappear and the system
may be treated as a lumped system.

5. CONCLUDING REMARKS

The dynamic thermal and elastic behavior of a rod involving a moving heat source is
modelled. The hyperbolic heat conduction model is used to determine the thermal behavior
of the thin rod.

The governing equations are derived and solved by using the Laplace transformation
technique. The solutions in the Laplace domain are inverted numerically by using the
Riemann-sum approximation.

The e!ects of di!erent geometrical, operating and design parameters on the thermal and
elastic behavior of the rod are investigated. The temperature of the rod is found to decrease
at large source speeds while the e!ect of this speed on the thermal behavior is insigni"cant
at very large time. Also, it is found that convective losses have insigni"cant e!ect on the rod
during very early stages of time. However, these losses accumulate with time and a!ect the
thermal behavior.

The behavior of the thermally induced displacement and stress of the rod is found to
depend on the source speed in the same manner as that of the temperature behavior for the
source speeds considered. At large values of speed, the variations in the rod thermal and
elastic behavior disappear and the rod may be treated as a lumped system.
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APPENDIX A: NOMENCLATURE

A
c

cross-sectional area, m2
c speci"c heat, J/(Kkg)
g heating source term, W/m3
g
0

strength of the heating source term, W/m2
h convective heat transfer coe$cient, W/(m2K)
i complex number"J!1
k thermal conductivity, W/(mK)
p perimeter, m
q heat #ux vector, W/m2
s Laplacian parameter
S
x

dimensionless stress, (p
x
/Ea¹

=
)

t time, s
t
0

reference time
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¹ temperature, K
¹

=
ambient and initial temperature, K

l speed of the moving source, m/s
< dimensionless speed of the moving source, (v/Ji/t

0
)

x axial coordinate, m
x
0

length of the rod, m

Greek letters

d delta function, l/m
g dimensionless time, t/t

0c dimensionless parameter, (g
0
Jt

0
/<¹

=
ocJi)

h dimensionless temperature, (¹!¹
=

)/¹
=hM Laplace transformation of dimensionless temperature

i thermal di!usivity, m2/s
o mass density, kg/m3
p
x

longitudinal stress, N/m2
qN phase lag, s
q dimensionless phase lag, qN /t

0f dimensionless axial coordinate, x/Jit
0f

0 dimensionless length of the rod, x
0
/Jit

0
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